תוכן עניינים:

התקשורת ESP-NOW. שליטה ב- Remoto De Vehículo, Joystick, Arduino Wemos .: 28 שלבים
התקשורת ESP-NOW. שליטה ב- Remoto De Vehículo, Joystick, Arduino Wemos .: 28 שלבים

וִידֵאוֹ: התקשורת ESP-NOW. שליטה ב- Remoto De Vehículo, Joystick, Arduino Wemos .: 28 שלבים

וִידֵאוֹ: התקשורת ESP-NOW. שליטה ב- Remoto De Vehículo, Joystick, Arduino Wemos .: 28 שלבים
וִידֵאוֹ: 🚀 RUTUBE и ТОЧКА. Разработка РУТУБА за 5 часов *БЕЗ ВОДЫ* [Next / React / Nest / PostgreSQL / Redux] 2024, יולי
Anonim
התקשורת ESP-NOW. שליטה ב- Remoto De Vehículo, ג'ויסטיק, Arduino Wemos
התקשורת ESP-NOW. שליטה ב- Remoto De Vehículo, ג'ויסטיק, Arduino Wemos

Todo parte de la idea de poder mover una silla de ruedas para personal discapacitado vía remota y poder acompañarlos sin necesidad de empujar la misma. Como ejemplo de funcionamiento, he creado este proyecto. Posteriormente se pueden cambiar los circuitos de salida y los motores, por otros de mayor potencia y acoplar a las ruedas de la silla un sistema mecánico que la mueva.

Si la persona que va en silla de ruedas está capacitada para manejarla personalmente, se pueden fusionar ambos sketches de Arduino en uno solo y evitar las comunicaciones remotas. פשוט לפשט את הבקרה של ג'ויטיק ואת השליטה במכוניות.

Aunque no gane ningún concurso, si a alguien le gusta (o una parte del mismo) o puede realizar el proyecto y aliviar el estado de ánimo de una persona mejorando su movilidad, me sentiré contento.

בסוף המסמך, אני מצרף קובץ PDF באנגלית של עבודה זו (מתרגם אינטרנט).

כל הסופי של התיעוד, תוספת לקובץ PDF עם כל הספרים המלאים.

שלב 1: מבוא:

Resumen del trabajo:.- Varios entradas analógicas a través de un solo puerto.

.- Wemos, especificaciones eléctricas.

.- Protocolo de comunicaciones ESP-NOW.

.- מעגל L298N. Specificaciones y pinout del mismo.

.- Montaje vehículo con dos motores DC

En este trabajo explico como tomar varios valores analógicos e introducirlos en un único puerto A0 de una placa Wemos. מערכת הג'ויסטיק העוסקת בחינם, מאפשרת העברת פורמטים, שיטות וסיבוכים עבור מדיה Wifi באמצעות פרוטוקול ESP-NOW. En el vehículo, otra Wemos recibe los datos y acciona dos motores DC para controlar la dirección del vehiculo.

Quizás alguien se pueda plantear que las cosas expuestas de estos trabajos, se puedan conseguir de forma fácil y barata en alguna web, pero el hecho de hacerlo tu mismo y con componentes de bajo precio siempre es unaatisfactionón cuando lo ves funcionar. Aparte de eso, me conformo con que a una persona le guste o le aclare algún concepto o duda.

מידע נוסף על הרעיונות והמשתמשים עבור מספר גדול יותר של טרבסצ'ו. Quizás a algunos le parezca interesante alguna parte del mismo.

שלב 2: Placa De Desarrollo Arduino Wemos:

פלאזה דה דסארלו ארדואינו וומוס
פלאזה דה דסארלו ארדואינו וומוס
פלאזה דה דסארלו ארדואינו וומוס
פלאזה דה דסארלו ארדואינו וומוס
פלאזה דה דסארלו ארדואינו וומוס
פלאזה דה דסארלו ארדואינו וומוס

Estamos hablando de una pequeña placa de desarrollo con amplias posibilidades:

Con ella podemos realizar proyector IoT, análisis de datos y envío a través de las redes y otras muchas cosas, aprovechando la capacidad Wifi de las mismas. En otro proyecto que he realizado, creo una red wifi propia y puedo abrir una cerradura remota, mediante una clave tecleada desde nuestro smartphone, que también he publicado. La diferencia respecto al anterior es que en vez de usar protocolo HTLM para la comunicación, uso la característica muy poco publicada de la comunicación WiFi del tipo ESP-NOW entre dos dispositivos, por ser fácil, rápida, segura (encriptada) y sin necesidad de emparejamientos a la hora de actuar (solo al configurar el sketch de Arduino). Mas adelante, a la hora de explicar el sketch, comentaré los detalles a tener en cuenta.

La placa dispone de una entrada de alimentación de 5v en el pin correspondiente (o por USB) y de una entrada de GND. Dicha alimentación no tiene porque ser 5v, ya que lleva un regulador de voltaje que lo convierte en 3.3v, que es realmente el voltaje de trabajo. En la datablad של la Wemos podemos verlo y adjunto también una image de la databank del regulador.

Según el link de las especificaciones del ESP8266, podría trabajar incluso a 3v, pero conviene alimentarlo con un voltaje superior a 3.5v, para que a la salida del regulador interno tengamos un minimo de 3v. En dicho link se puede ver otros detalles técnicos que amplian esta information.

cdn-shop.adafruit.com/product-files/2471/0…

La Placa también dispone de 9 entradas/salidas digitales (D0-D8). Todas tienen la capacidad de poder trabajar con salidas del tipo PWM, bus I2C, וכו '.

Detalle a tener muy en cuenta a la hora de conectar algo a la salida de los pines digitales, para iluminar leds, activar relés, וכו 'La corriente máxima que puede entregar un pin Digital es de 12mA. Si se necesita entregar mas corriente, debemos intercalar entre el pin y el dispositivo un transistor o un opto acoplador de mayor potencia. Ver figura de salidas.

Con una resistencia en series con la salida de 330 ohms, se entrega una corriente de 10mA, por lo que si es posible, aumentar el valor de las resistencias. Hay en muchas webs la recomendación de una resistencia de 330 ohm en series con los leds Yo recomiendo usar resistencias mas altas. Si ilumina el הוביל ניאוסטרו גוסטו, אין צורך nacesitamos sumar mAs al trabajo Cualquier ahoro de energía siempre es bueno.

הערה: en los pines digitales, podemos dar valores PWM entre 0 y 1023. En Arduino Uno, entre 0 y 254.

La placa Wemos también dispone de una entrada digital A0, para análisis de datos analógicos. Hay que tener en cuenta dos cosas. La primera es que NO se le puede aplicar un voltaje superior a 3.3v directamente, ya que se versioraría. Si se quiere medir un voltaje superior, hay que intercalar un divisor de voltaje externo. Los valores de dicha entrada son de 0 a 1024.

Otras características:

-Salida de 3.3v para alimentar circuitos exteriores. סיכת Máxima corriente 12mA.

-קונקור מיקרו USB עבור קושחה של קושחה ומערכת 5v

-פולסדור דה אפס.

אני יכול ללמוד את התצורה של IDE de Arduino para trabajar con este tipo de placa, así como las librerías necesarias. No voy a entrar en ello para no alargar demasiado este trabajo.

שלב 3: ג'ויסטיק Circuito Del (mando a Distancia):

ג'ויסטיק Circuito Del (mando a Distancia)
ג'ויסטיק Circuito Del (mando a Distancia)
ג'ויסטיק Circuito Del (mando a Distancia)
ג'ויסטיק Circuito Del (mando a Distancia)

Me gusta la placa de desarrollo Wemos, ya que tiene poco tamaño, es barata y tiene muchas posibilidades. Como solo dispone de una entrada analógica A0, surge el problema de querer captar varios valores analógicos al mismo tiempo. Para mi caso en concreto, un joysick está formado por dos potenciómetros con salidas individuales analógicas y un pulsador. Además, quiero analizar el valor actual de la batería que uso en el mando a distancia, por lo que que necesitamos tomar 3 valores analógicos distintos.

En el siguiente esquema, creado con Fritzing, tenemos a la izquierda un divisor de voltaje. Si la batería es de mas de 3.3v, la entrada analógica corre riesgo de averiarse, por ello conviene reducir el voltaje para su análisis. Voy a usar una batería de 3.7v, por lo que cuando está cargada completeamente es de aproximadamente 4v y debido al divisor de voltaje, en el pin 4 de H1 tenemos 2v (משתנה תלוי ב- delado de la batería). A la derecha tenemos un joystick básico, formado por dos potenciómetros y un pulsador (R3 es externa al joystick). Se alimentan con los 3.3v que proporciona la Wemos. En este esquema general primero, tenemos 3 valores analógicos (pines 2, 3 y 4 de H1) y un valor digital (pin 1 de H1).

לניתוח אנרגיה של la placa Wemoslos 3 valores analógicos, recurrimos and unos pequeños opto-acopladores, el chip SFH615A o TLP621. Es muy básico su funcionamiento para este trabajo. En pin 4 del chip pongo uno de los valores analógicos a analizar. Todos los pin 2 a GND. Todos los pin 3 unidos ya A0 y cada uno de los pin 1 a una salida digital a través de un resistor, las cuales voy activando sucesivamente y dependiendo cual active y leyendo el valor en A0, asigno a cada valor una משתנה (סיר 1y pot 2 del joystick y batería).

Hay que tener en cuenta que no podemos conectar la salida digital de la Wemos directamente al pin 1 del TLP621, ya que se versioraría dicha salida digital. סיכת סיכה דיגיטלית בעבודת יד עם 12mA. Por ello, intercalamos una resistencia suficiente para activar el led interno. Con 470 Ω, es suficiente para activarlo y solo supone 7 mA.

Al querer introducir 3 valores analógicos mediante este system, usamos 3 salidas digitales para poder activarlas. Si queremos introducir mas valores analógicos por A0, podemos usar otras salidas digitales más o podemos seguir usando solo 3 salidas digitales, añadiendo al circuito un demultiplexor y dando valores binarios a las entradas, conseguimos hasta 8 poseses vales digitales.

Añadimos al mando a distancia 2 leds, uno para reflejar "Power ON" y el otro para el estado de la batería y "Transmisión OK".

Añado al circuito un interruptor para la batería y un conector para poder recargar la misma sin tener que quitarla (aviso: APAGAR PARA RECARGAR para evitar dañar el regulador ME6211 de la placa Wemos). Con todo lo anteriormente explicado, el circuito completeo del mando a distancia con joystick es la siguiente figura.

שלב 4: ג'ויסטיק 2:

ג'ויסטיק 2
ג'ויסטיק 2

הסבר על הדלת האחורית של IDE de Arduino:

En A0 recojo los valores de los potenciómetros y del nivel de la batería.

En D0 pasa a HIGH cuando se pulsa el botón del joystick ("parada de emergencia")

Si activo D1, leo el estado del potenciómetro vertikal del joystick en A0.

Si activo D2, leo el estado del potenciómetro אופקי של ג'ויסטיק ב- A0.

Si activo D5, leo el estado de la batería en A0. הערה: en un principio lo puse en D4, אבל אני יכול להשתמש בבעיות של כל תוכניות התוכנית של IDE de Arduino, por lo que la pasé a D5

La salida D3 se usará para el led de Actividad (azul). Dicho led se enciende cuando hay movimiento de joystick y la transmisión ha sido correcta. Cuando está en reposo nos indica el estado de la batería (1 יחידות 3.6 y 3.5v, 2 parpadeos entre 3.5 y 3.4v y 3 parpadeos por debajo de 3.4v).

אל led rojo indica Encendido/Power ON.

S1 es el interruptor de encendido. Conviene tenerlo apagado cuando se realiza la carga de la batería o si hago modificaciones en el software (5v a través del USB).

מסלול ההרצאה של מונטאדו והפרוטובורד לה לה פיגורים:

La línea inferior positiva es el voltaje de la batería. La línea superior positiva es la salida de 3.3v de la Wemos

שלב 5: ג'ויסטיק פלאקה דה סירקוטוס:

ג'ויסטיק פלאקה דה סירקוטוס
ג'ויסטיק פלאקה דה סירקוטוס
ג'ויסטיק פלאקה דה סירקוטוס
ג'ויסטיק פלאקה דה סירקוטוס
ג'ויסטיק פלאקה דה סירקוטוס
ג'ויסטיק פלאקה דה סירקוטוס
ג'ויסטיק פלאקה דה סירקוטוס
ג'ויסטיק פלאקה דה סירקוטוס

הוא מגדיר את המעגלים עם ספרינט-פריסה 6.0 עבור הג'ויסטיק, אופטו אקופלאדורס, Wemos y otros. Indico las medidas por si alguien la quiere realizar (40x95 מ מ). Hay que tener cuidado con el pin 1 de los TLP621. Van soldados al terminal cuadrado y en la posición indicada visto desde la cara de los componentes. La parte de la placa próxima a los conectores y Wemos, la recorto posteriormente, así queda de forma cómoda el agarre del mando, el encendido y las conexiones externas.

Las fotos del mando a distancia. En los bordes, las conexiones USB, el conector de carga de la batería y el interruptor de ON/OFF.

Fácil de sujetar, aunque sea un poco grande. Me falta realizar una caja a medida para el mismo con la impresora 3D:

שלב 6: קבלן המעגלים (מוטורס):

קולט המעגל המעגלי (מוטורס)
קולט המעגל המעגלי (מוטורס)

ניתן למצוא מידע נוסף על Wemos, וניתן לקבל נתונים על ג'ויסטיק על שליטה בשליטה והפעלה של LES SEALES NECESARIAS HACIA UN L298N (DOUBLE PUENTE EN H) Y Controlar dos motores, hacia adelante y hacia atrás, con control de dirección. Como complemento del circuito, 3 leds, uno para power ON, otro para la transmisión de datos y un tercero como indicativo de "parada de emergencia". Aprovecho estos dos últimos (parpadeando) para la indicación del estado de la batería del vehículo.

Control de estado de la batería: Lo primero a tener en cuenta es que la batería que estoy usando es de 9v. Intentar medir la misma en A0 directamente, supone deteriorar el puerto, ya que el máximo valor que se le puede aplicar es de 3.3v. Para evitarlo, ponemos también otro divisor de voltaje, esta vez mas descompensado que en el mando a distancia y reducir el valor en A0. Para este caso, utilizo and resistor de 47k en series con otro de 4k7. En el punto central es donde tomo la referencia a medir. "Bateria baja", בין 7v ו- 5.5v, parpadeo del led de "Emergencia". "Bateria MUY baja" (עבור debajo de 5, 5v, 3 parpadeos del led "Recepción ok")

המעגל המלא של הרכב:

Debido a que este circuito está montado sobre un vehículo, no he querido complicar mucho el sketch de Arduino. פשוט לקבל את הנתונים של הג'ויסטיק באמצעות wifi ESP-NOW ואת ההרשמה וההגדרות של מכוניות. Eso facilita a que en futuros cambios de software o modificaciones de trayectoria, se realicen solo en el mando a distancia (joystick) en vez de en ambos.

לא הוא הבין במיוחד מקום מיוחד. Tan solo una provisorium para los leds y sus resistencias.

שלב 7: L298N (כפול Puente En H)

L298N (כפול Puente En H)
L298N (כפול Puente En H)
L298N (כפול Puente En H)
L298N (כפול Puente En H)

Esta es una pequeña descripción del circuito que controla los motores DC que mueven el vehículo.

- קונקטורים A y B (אזולים של 2 אורנים). Son las salidas de corriente hacia los motores. Si tras las pruebas, el motor gira al lado contrario del que deseamos, simplemente invertir los pines del mismo

Conector de Power (azul de 3 pines). Es la entrada de corriente al circuito. Como el mismo puede ser alimentado entre 6 y 36 voltios, hay que tener muy en cuenta el jumper o puente que hay junto al conector. Si lo alimentamos con un voltaje entre 6 y 12v, el puente se deja PUESTO y en Vlogico tenemos una salida de 5v hacia la Wemos (como en este trabajo). Si el circuito se alimenta con un voltaje superior a 12v, hay que quitar el puente para que no se dañe el convertitor DC-DC que lleva y si queremos que funcione su circuitería lógica, deberemos llevar un cable de 5v externo hacia el circuito (5v קֶלֶט). En mi caso, como utilizo una batería de 9v, lo dejo puesto y me sirve para alimentar la placa Wemos a través del pin 5v. GND viene del negativeo de la batería y va también a G de la Wemos y a los leds.

Conector de Control (6 אורנים). Tiene dos partes. ENA, IN1, IN2 controlan el motor conectado en A y ENB, IN3, IN4 que controlan el motor conectado en B. En la tabla de la figura anterior se indica los niveles de las señales que debe tener para poner and movimiento los motores, adelante, atrás o frenado. En ENA y EN EN hay unos puentes. Si los dejamos puestos, el L298N pondrá los motores al voltaje de entrada Vm en el sentido indicado, sin ningún control de velocidad ni de regulación de voltaje. Si los quitamos, usaremos dichos pines para recibir una señal PWM desde la placa Wemos y así controlar la velocidad de cada motor. En Arduino se consigue mediante un comando analogWrite (). En la placa Wemos, todas los puerto D tienen esa capacidad.

En la figura del L298N hay un recuadro con un pequeño sketch for Arduino UNO, que hará girar el motor A hacia adelante a un voltaje cercano al 75% de Vm.

La gráfica anterior a este texto, explica la relación de analogWrite () con la forma de salida en los pines para Arduino UNO. En la Wemos, el 100% consigue con analogWrite (1023) y al 50% sería analogWrite (512).

A la hora de realizar este proyecto, hay que tener muy en cuenta los posibles valores PWM de ENA y ENB que se suministran mediante el comando analogWrite, ya que dependen del valor del voltaje de la batería y del voltaje de los motores. En este caso utilizo una batería de 9v (Vm) y motores de 6v. Al ir aumentando la señal PWM en ellos, el voltaje del motor asciende, pero no comienza a movers hasta que llega a un valor determinado, por lo que en las pruebas, se debe establecer ese minimo PWM que lo haga mover a baja velocidad. Por otra parte, si ponemos la señal PWM al máximo, le damos al motor el voltaje Vm de la batería (9v) y se puede dañar el mismo, por lo que en las pruebas, debemos medir el voltaje y establecer ese máximo PWM para que no se deteriore y como mucho proporcione los 6v máximo. Ambas cosas, como ya comentaba anteriormente, en el sketch de Arduino del mando a distancia.

שלב 8: Montaje Del Vehículo:

Montaje Del Vehículo
Montaje Del Vehículo
Montaje Del Vehículo
Montaje Del Vehículo
Montaje Del Vehículo
Montaje Del Vehículo

Tengo que reconocer que el montaje es un poco casero, pero efectivo. Quizás diseñe e imprima en 3D un modelo mas bonito, pero este modelo "casero" tiene la ventaja de ver mejor el funcionamiento. Existen una serie de motores, con reductora incluida y ruedas para acoplar, a bajo precio. Yo he usado lo que tengo a mano.

Para el montaje, he impreso in 3D unas piezas, ruedas, soporte de rodamiento/motor y unos casquillos y uso tornillería de 3mm di dimetro para unir las piezas. Para la unión del motor al tornillo eje, he usado los contactos de una regleta de conexión eléctrica cortando el plástico externo. Al montar las ruedas, conviene pegar el tornillo a la rueda, para evitar que patine al girar.

La siguiente muestra el soporte del rodamiento/motor y la pieza 3D que lo su sujeta.

מונטו לה רואדה. Tomo las medidas, corto el tornillo que sobra y los uno:

Una vez realizado el montaje de los dos conjuntos motriz, los sujeto a una plataforma de 10x13 cm (blanco). Les uno otra plataforma (8x12cms) para soporte de los circuitos y la rueda trasera. La diferencia de altura la marca el tipo de rueda que pongamos, para mantener el vehículo horizontal. La distancia entre la rueda trasera y la primera plataforma nos debe asegurar el giro de la misma, por eso tuve que corregir el primer agujero, como veis en las fotos.

Añado los circuitos y al final la batería con un conector para poder cargarla.

Como veis, no es un gran diseño. Mi intención es aplicar este system a una silla de ruedas como comentaba al principio de este trabajo. אך אם כן, תוכלו ליהנות ממידת האפשרויות.

Y ahora pasamos a la explicación del sketch de Arduino que he realizado.

שלב 9: ארדואינו:

ארדואינו
ארדואינו

Como escribí al principio, no puedo expanderme mucho y prescindo de como configurar el IDE de Arduino, librerías y como debe reconocer la placa Wemos para poder trabajar con ellas. יחידות יחיד:

.- En Preferencias, Gestor de URLs adicionales:

arduino.esp8266.com/stable/package_esp8266com_index.json

.- En Herramientas (כלים), Gestor de tarjetas, como muestra la imagen:

שלב 10: ¿Qué MacAddress Tiene Nuestra Placa?

¿Qué MacAddress Tiene Nuestra Placa?
¿Qué MacAddress Tiene Nuestra Placa?

Como paso previo e untestable antes de trabajar con el protocolo ESP-NOW, debemos cargar este pequeño sketch en las Wemos con las que vamos a trabajar, para saber la AP MAC de las ESP8266 que llevan integradas. En Herramientas, Monitor Series podemos ver el resultado del sketch and anotar sobre todo la AP de cada placa Wemos.

Tengo la costumbre de al recibir las que compro, marco las bolsitas y la placa con dicho dato:

שלב 11: ESP-NOW

Una vez con la AP MAC de las placas, comenszo a hablar del protocolo ESP-NOW desarrollado por Espressif:

"ESP-NOW מאפשרים שליטה בלתי אמצעית על הבאג'ה פוטנסיה דה לאס לוקס אינטלגננטים, כיוון שלא יהיה צורך באנ"ס. Este método es energéticamente eficiente y conveniente.

ESP-Now es otro protocolo desarrollado for Espressif, que permitt que múltiples dispositivos se comuniquen entre sí sin usar Wi-Fi. כל הפרוטוקולים דומים לאפשרויות חיבוריות של 2.4GHz ואפשר להשתמש בהן. Por lo tanto, el emparejamiento entre dispositivos es necesario antes de su comunicación. Una vez que se realiza el emparejamiento, la conexión es segura y de igual a igual, sin que sea necesario un apretón de manos."

מידע על הקישור:

docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_now.html

ESP-NOW es protocolo amplio y with muchas posibilidades, pero quiero mostrar una forma fácil de comunicar dos dispositivos and transmitir data in entre ellos, sin utilizar formas complejas.

שלב 12: Librería ESP-NOW

Librería ESP-NOW
Librería ESP-NOW

כל הסקיצות מכינות סולו un dispositivo transmite (joystick) y otro recibe sus datos (vehículo). Pero ambos deben tener cosas comunes necesariamente, las cuales paso a descriptionir.

.- Inicio de la librería ESP-NOW

שלב 13: La Estructura De Datos a Transmitir/recibir:

La Estructura De Datos a Transmitir/recibir
La Estructura De Datos a Transmitir/recibir

.- La estructura de datos a transmitir/recibir. אין משתני פודמוס definir לאס משתנים לאורך, sino de longitud fija, debido a cuando se transmiten todos los datos a la vez, el que recibe debe saber separar cada byte recibido y saber a que valor de variable asignar dichos bytes recibidos. Es como cuando se prepara un tren, con distintos vagones y la estación que los recibe debe saber cuantos y para que empresa deben ir. Quiero transmitir 5 datos a la vez, Jo pulso el joystick, y los voltajes (motor Izquierdo y Derecho) y sentido (adelante/atrás) de cada motor del vehículo, que extraigo de la posición del mismo.

שלב 14: Defino El Tipo De Función ESP-NOW

Defino El Tipo De Función ESP-NOW
Defino El Tipo De Función ESP-NOW

.- Defino el tipo de función que realizará cada Wemos. Quizás debido a la falta de experiencecia en el protocolo ESP-NOW, he tenido ciertos problemsas cuando a uno lo defino como maestro y al otro como esclavo. Siempre me ha funcionado bien poniendo los dos como bidireccionales (תפקיד = 3)

שלב 15: Emparejamiento De Los Dispositivos ESP-NOW:

Emparejamiento De Los Dispositivos ESP-NOW
Emparejamiento De Los Dispositivos ESP-NOW

.- Emparejamiento de los dispositivos. חשוב: אחד הסקיצות של ג'ויסטיק הפונקר של AP MAC de la Wemos del vehículo. כל סקיצה של כלי הרכב, מנגנון הג'ויסטיק של MAC.

.- Como clave (מפתח), הוא יכול להעלות את התפקיד ב- AP MAC, למשל.

שלב 16: Envío De Datos Al Vehículo:

Envío De Datos Al Vehículo
Envío De Datos Al Vehículo

.- Envío de datos al vehículo, figura siguiente. Primero hay que preparar esos vagones del tren que hay que enviar (data), con recuadro rojo. Después, hay que definir a quien lo envío (da), que es la AP MAC de la Wemos del vehículo y la longitud total del TREN. Una vez definidos estos datos anteriores, se envía el paquete de datos (cuadro verde).

Recuerda: Quiero transmitir 5 datos a la vez, Si pulso el joystick, y los voltajes (motor Izquierdo y Derecho) y sentido (adelante/atrás) de cada motor del vehículo.

Tras el envío, verifico que el vehículo ha recibido los datos correctamente (cuadro azul).

שלב 17: Recepción De Datos En El Vehículo:

Recepción De Datos En El Vehículo
Recepción De Datos En El Vehículo

.- Recepción de datos en el vehículo. Esta es la función que he usado en la Wemos del vehículo. Como se puede ver la pongo en modo de recepción (con respuesta, call back) y la data recibida la asigno a las משתנים (vagones del TREN) con la misma estructura utilizada in ambos:

Y simplemente con lo anterior, puedo transmitir/recibir datos vía Wifi ESP-NOW de forma sencilla.

En los siguientes pasos beskriver את הסקיצה של Arduino del mando a distancia (ג'ויסטיק).

שלב 18: ג'ויסטיק: הגדרת דה פינס משתנים

ג'ויסטיק: הגדרת דה פינס משתנים Y
ג'ויסטיק: הגדרת דה פינס משתנים Y
ג'ויסטיק: הגדרת דה פינס משתנים Y
ג'ויסטיק: הגדרת דה פינס משתנים Y

.-Tras definir la librería de ESP-NOW, defino los pines que voy a utilizar de la Wemos

.- Defino las משתנים que usaré posteriormente:

שלב 19: התקנה ()

להכין()
להכין()

.- Ya en setup (), en la primera parte, defino como van a trabajar los pines de la Wemos y un valor inicial de los mismos. También verifico que el protocolo ESP-NOW esté inicializado bien. Y tras ello, defino el modo de trabajo y emparejamientos anteriormente comentados:

שלב 20: לולאה ()

לוּלָאָה()
לוּלָאָה()
לוּלָאָה()
לוּלָאָה()

.- Inicio el loop () con un retardo que nos marca el número de transmisiones o lecturas del joystick que quiero hacer por segundo (figura siguiente). הוא הוציא 60 מסרים, וראו לי ריאליזוס במשך 15 הרצאות עבור מספר מסעדות. Después leo el estado del pulsador de emergencia del joystick. Si se pulsa, pongo a cero los valores de los motores, transmito y establezco un retardo donde no responde a nada hasta que pase ese tiempo (en mi caso de 5 segundos, delay (5000);).

.- El resto del loop (), son las llamadas a las funciones que utilizo, que posteriormente explicaré.

שלב 21: Funcion LeePots ()

Funcion LeePots ()
Funcion LeePots ()

.- Leo el estado de los potenciómetros y de la batería. Los retardos (delay) que pongo de 5 msg son para que las lecturas en los optoacopladores sean precisas. Hay que tener en cuenta que desde que se activa el led, tarda unos microsegundos (unos 10) en estabilizar la salida, así que le pongo 5 msg para que las lecturas sean mas correctas. Se podría bajar este retardo perfectamente.

שלב 22: Funcion AjustePots ()

Funcion AjustePots ()
Funcion AjustePots ()

.- Una vez leídos los potenciómetros y el estado de labatería, hay que transformar el movimiento del joystick en sentido y corriente hacia los motores. Si analizamos el potenciómetro vertical, por ejemplo, los pasos están mostrados en la figura siguiente.

1.

2.- Averiguar cual es el punto medio del mismo (reposo de la palanca). Ver leePot ();

3.- Establecer un margen para que no se mueva el vehículo con ligeros movimientos o que no afecten las fluctuaciones eléctricas.

4.- Convertir los movimientos hacia arriba o hacia abajo en sentido y corriente de los motores.

Los pasos 2 a 4 los realizo en ajustePots ();.

שלב 23: פונקציית DirMot ()

פונקציה DirMot ()
פונקציה DirMot ()

.- Partimos del hecho de que un dispositivo de dos motores, sin eje de dirección, necesita unos valores de sentido y voltaje hacia los mismos. La conversión de hacia adelante/atrás y hacia la izquierda/derecha en sentido/voltaje lo realizo en dirMot (), teniendo en cuenta las 3 direcciones hacia adelante izquierda/frontal/derecha, lo mismo hacia atrás e incorporo el giro sobre. Cuando va hacia adelante y giro, lo que hago es reducir el voltaje de la rueda a la que giro, proporcionalmente al movimiento del joystick y evitando los valores negativeos (se descontrola el vehículo), por lo tanto, el valor de reducción nunca puede ser menor que el valor de avance (como mucho, para el motor). De ahí el uso de la variable de giro (VariableGiro). Esta משתנה convierte el giro en mas suave y el vehículo se controla mejor.

Como la función es grande, se puede sacar del fichero INO adjunto.

Tiene varios casos, dependiendo de la posición del joystick:

.- Centrado y en reposo (vehículo parado).

.- Giro sobre si mismo (izquierda o derecha).

.- Avance (con o sin giro)

.- Retroceso (con o sin giro)

שלב 24: שליטה על הג'ויסטיק של Batería En El:

ג'ויסטיק שליטה על Batería En El
ג'ויסטיק שליטה על Batería En El

.- Por último, el control del estado de la batería. ג'ויסטיק Cuando el está en reposo, o no ha podido transmitir, incremento un contador. Si alcanza un valor deseado (50 צמות), analizo el estado de la batería y hago parpadear el led (1 parpadeo = baja, 2 parpadeos = muy baja)

שלב 25: Arduino (Vehículo)

ארדואינו (Vehículo)
ארדואינו (Vehículo)
ארדואינו (Vehículo)
ארדואינו (Vehículo)

Sobre la parte correspondiente a las comunicaciones (ESP-NOW) con el joystick, ya se comentaron anteriormente, por lo que analizo el resto. Hay que tener en cuenta de que lo he simplificado bastante, para que si hay que hacer modificaciones, se trabaja mejor modificando el mando a distancia que a tener que poner el vehículo en la mesa y conectarlo al ordenador. עבור, אני יכול להגביל את כל הנתונים של הסרטים והלוחות L298N para que se muevan los motores. Priorizo la recepción del pulsador de emergencia y en los tiempos sin movimiento, analizo el estado de la batería.

.- Pines de entrada salida de la placa Wemos y משתנים usadas:

.- ya en el setup () inicio los pines y su estado inicial. כל ההגדרות של ESP-NOW הן:

שלב 26: Vehículo, Loop ():

Vehículo, Loop ()
Vehículo, Loop ()
Vehículo, Loop ()
Vehículo, Loop ()
Vehículo, Loop ()
Vehículo, Loop ()

.- En loop (), aparte de mirar el estado de la batería, mando ejecutar dos funciones, una comentada ya al hablar del ESP-NOW, recepción () y la otra realiza el manejo del L298N con los datos recibidos. עבור supuesto, lo primero es analizar una posible emergencia y parar el vehículo.

Primero establezco un pequeño retardo en las comunicaciones, para sincronizar el receptor mas o menos con el transmisor. Ejecuto la función de recepción () y analizo si se ha pulsado "Emergencia" עבור proceder a la inmovilización. Si no recibo datos o movimiento de ninguno de los motores, los paro también mediante el envío de datos a la función writeL298N (). Si no hay datos, incremento un contador para revisión de la batería. Si hay datos recibidos, enciendo el led de comunicaciones y por supuesto, los mando a la función writeL298N () para que se mueva el motor según dichos datos.

שלב 27: Vehículo: - Función WriteL298N ()

Vehículo: - פונקציה WriteL298N ()
Vehículo: - פונקציה WriteL298N ()
Vehículo: - פונקציה WriteL298N ()
Vehículo: - פונקציה WriteL298N ()

.- פונקציה לכתוב L298N () Si recordais la tabla del L298N, simplemente es escribir dichos valores con los datos recibidos

שלב 28: סופי:

Ésto es todo. No es mi intención ganar concursos, sino aclarar conceptos. Si UNA persona agradece este trabajo, le sirve para adquirir un conocimiento y después desarrollar alguna idea propia, me conformo. Si uno lo implementa en una silla de ruedas y hace mas confortable la vida a una persona, me haría mucha ilusión.

Adjunto PDF en español y PDF en English

Adjunto los ficheros de arduino de ambos dispositivos.

חס ושלום:

מיגל א.

מוּמלָץ: